SQL: Queries, Constraints,
I'riggers

Chapter 5

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

|

<+ We will use these
instances of the
Sailors and
Reserves relations
in our examples.

<+ If the key for the
Reserves relation
contained only the
attributes sid and
bid, how would the
semantics differ?

51

52

Example Instances

NN

R1 [sid bid day
22 101 10/10/96—
58 103 [11/12/96
sid 'sname rating age
22 |dustin | 7 45.0
31 lubber | 8 55.5
58 |rusty 10 [35.0
sid |sname rating age
28 yuppy | 9 35.0
31 |lubber @ 8 55.5
44 |guppy | 5 35.0
58 |rusty 10 |35.0

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Basic SQL Query

SELECT
FROM
WHERE

[DISTINCT] target-list

relation-list
qualification

% relation-list A list of relation names (possibly with a
range-variable after each name).

% target-list A list of attributes of relations in relation-list

% qualification Comparisons (Attr op const or Attrl op

Attr2, where op is one of <, >, =
combined using AND, OR and NOT.

<, >, %)

+ DISTINCT is an optional keyword indicating that the
answer should not contain duplicates. Default is that
duplicates are not eliminated!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

k<

Conceptual Evaluation Strateqy

% Semantics of an SQL query defined in terms of the
following conceptual evaluation strategy:
= Compute the cross-product of relation-list. (x)
= Discard resulting tuples if they fail qualifications. (o)
= Delete attributes that are not in target-list. ()
= If DISTINCT is specified, eliminate duplicate rows.

% This strategy is probably the least efficient way to
compute a query! An optimizer will find more
efficient strategies to compute the same answers.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Example of Conceptual Evaluation

|

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

(sid) |sname rating age |(sid) bid |day
22 |dustin | 7 450 22 101 (10/10/96
22 |dustin | 7 450 58 103 |(11/12/96
31 |lubber | 8 555 22 101 (10/10/96
31 |lubber | 8 555 58 103 (11/12/96
58 |rusty 10 [35.0 22 |101 [10/10/96
58 |rusty 10 35.0 58 |103 [11/12/96

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

A Note on Range Variables

% Really needed only if the same relation
appears twice in the FROM clause. The
previous query can also be written as:

SELECT S.sname

FROM Sailors S, Reserves R It is good style,
WHERE S.sid=R.sid AND bid=103 however, to use
range variables

OR SELECT sname always!

FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid
AND bid=103

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

\\@7

Exercise Session (5 minutes) =]

|]

% Recall the following Semantics of an SQL query:
» Compute the cross-product of relation-list. (x)
= Discard resulting tuples if they failqualifications.(c)
= Delete attributes that are not in target-list. (m)
= If DISTINCT is specified, eliminate duplicate rows.

Write the following query using realtional algebra:
SELECT S.sname FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Find sailors who’ve reserved at least one boat

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

% Would adding DISTINCT to this query make a
difference?

% What is the etfect of replacing S.sid by S.sname in
the SELECT clause? Would adding DISTINCT to
this variant of the query make a difference?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

N\ =
Expressions and Strings ‘Iq

SELECT S.age, agel=S.age-5, 2*S.age AS age2
FROM GSailors S
WHERE S.sname LIKE ‘B_%DB’

| —

+ Illustrates use of arithmetic expressions and string
pattern matching: Find triples (of ages of sailors and
two fields defined by expressions) for satlors whose names
begin and end with B and contain at least three characters.

+ ASand = are two ways to name fields in result.

+ LIKE is used for string matching. °_’ stands for any
one character and "%’ stands for 0 or more arbitrary
characters.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

. o Y \ QQ
Find sid’s of sailors who ve reserved a red or a \/
green boat “

«» UNION: Can be used to SELECT S.sid

compute the union of any FROM Sailors S, Boats B, Reserves R
two union—compatible sets of WHERE S.sid=R.sid AND R.bid=B.bid

- AND (B.color="red’ OR B.color="green’
tuples (which are (B.color="re color="green’)

themselves the result of

SQL queries) _ SELECT S.sid
+ If we replace OR by AND 1In FROM Sailors S, Boats B, Reserves R
the first version, what do WHERE S.sid=R.sid AND R.bid=B.bid
we get? AND B.color="red’
. UNION
< Also available: EXCEPT SELECT S.sid
(What do we get if we FROM &Sailors S, Boats B, Reserves R

replace UNION by EXCEPT?) WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="green’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

NS
Find sid’s of sailors who ve reserved a red and a <> /
green boat “

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,
% INTERSECT: Can be used to Boats B2, Reserves R2
Compute the intersection WHERE S.sid=R1.sid AND R1.bid=B1.bid
AND S.sid=R2.sid AND R2.bid=B2.bid

of any two union- > , ,
AND (B1.color="red” AND B2.color='green’)

compatible sets of tuples.

% Included in the SQL/92 SELECT s,sid/_\Key field!

standard, but some FROM Sailors S, Boats B, Reserves R
AND B.color="red’
» Contrast symmetry of the |NTERSECT

UNION and INTERSECT SELECT S.sid
queries with how much FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid

the other versions differ.))
AND B.color="green

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Nested Queries

Find names of sailors whove reserved boat #103:

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid=103)

% A very powerful feature of SQL: a WHERE clause can
itself contain an SQL query! (Actually, so can FROM
and HAVING clauses.)

< To find sailors who've not reserved #103, use NOT IN.

+ To understand semantics of nested queries, think of a
nested loops evaluation: For each Sailors tuple, check the
qualification by computing the subquery.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Nested Queries with Correlatzon

Find names of sailors whove reserved boat #103:
SELECT S.sname

FROM Sailors S
WHERE EXISTS (SELECT\
FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)
+ EXISTS is another set comparison operator, like IN.

% If UNIQUE is used, and * is replaced by R.bid, finds
sailors with at most one reservation for boat #103.
(UNIQUE checks for duplicate tuples; * denotes all
attributes. Why do we have to replace * by R.bid?)

+ Illustrates why, in general, subquery must be re-

computed for each Sailors tuple.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

N
.
More on Set-Comparison Operators

% We've already seen IN, EXISTS and UNIQUE. Can also
use NOT IN, NOT EXISTS and NOT UNIQUE.

% Also available: op ANY, op ALL, op IN >,<,=,2,5,#

+ Find sailors whose rating is greater than that of some
sailor called Horatio:

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname="Horatio")

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

N
Rewriting INTERSECT Queries Using IN

Find sid’s of sailors who ve reserved both a red and a green boat:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color="red’
AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid
AND B2.color="green’)

% Similarly, EXCEPT queries re-written using NOT IN.

+ To find names (not sid’s) of Sailors who've reserved
both red and green boats, just replace S.sid by S.sname
in SELECT clause. (What about INTERSECT query?)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

(1) SELECT S.sname =
FROM Sailors S

D iZ)iSiO}”l lTl SQ L WHERE NOT EXISTS

((SELECT B.bid
FROM Boats B)
EXCEPT
(SELECT R.bid

< Let's do it the hard FROM Reserves R

way, without EXCEPT: IRIINE d=s.aidl)

Find sailors who've reserved all boats.

(2) SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
FROM Boats B
WHERE NOT EXISTS (SELECT R.bid
FROM Reserves R

there is no boat B without ... WHERE R.bid=B.bid
AND R.sid=S.sid))

Sailors S such that ...

a Reserves tuple showing S reserved B

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

N

A COUNT (*) Q

38Te ate O]O erators COUNT ([DISTINCT] A) \“
SUM ([DISTINCT] A)

. . AVG ([DISTINCT] A
+ Significant extension of (14

. MAX (A)

relational algebra. MIN (A)
SELECT COUNT (*) \ single column
FROM Sailors S SELECT S.sname

FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)
FROM Sailors S2)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (DISTINCT S.rating) SELECT AVG (DISTINCT S.age)
FROM Sailors S FROM Sailors S

WHERE S.sname="Bob’ WHERE S.rating=10

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

N =
Find name and age of the oldest sailor(s) \ﬂ'/

| o SELECT S.sname, MAX (S.age)
2 The first query is illegal! FROM Sailors S

(We'll look into the
reason a bit later, when
we discuss GROUP BY.)

SELECT S.sname, S.age
FROM GSailors S
WHERE S.age =

% The third query is (SELECT MAX (S2.age)
equivalent to the second FROM Sailors S2)
query, and is allowed in SELECT S.sname, S.age
the SQL /92 standard, FROM Sailors S
but is not supported in WHERE (SELECT MAX (S2.age)
some systemes. FROM Sailors S2)

= 5S.age

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

N =
Motivation for Grouping

% So far, we've applied aggregate operators to all
(qualifying) tuples. Sometimes, we want to apply
them to each of several groups of tuples.

% Consider: Find the age of the youngest sailor for each
rating level.

= In general, we don’t know how many rating levels
exist, and what the rating values for these levels are!

= Suppose we know that rating values go from 1 to 10;
we can write 10 queries that look like this (!):

| SELECT MIN (S.age)
Fori=1,2,...,10: FROM Sailors S
WHERE S.rating =1

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

A\ =
Queries With GROUP BY and HAVING /

SELECT [DISTINCT] target-list
FROM relation-list

WHERE qualification

GROUP BY grouping-list
HAVING group-qualification

% The target-list contains (i) attribute names (ii) terms
with aggregate operations (e.g., MIN (5.age)).

= The attribute list (i) must be a subset of grouping-list.
Intuitively, each answer tuple corresponds to a group, and
these attributes must have a single value per group. (A
group is a set of tuples that have the same value for all
attributes in grouping-list.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

N
Conceptual Evaluation E’/

% The cross-product of relation-list is computed, tuples
that fail qualification are discarded, “unnecessary’ tields
are deleted, and the remaining tuples are partitioned
into groups by the value of attributes in grouping-list.

% The group-qualification is then applied to eliminate
some groups. Expressions in group-qualification must
have a single value per group!

= In effect, an attribute in group-qualification that is not an
argument of an aggregate op also appears in grouping-list.
(SQL does not exploit primary key semantics here!)

% One answer tuple is generated per qualifying group.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Find age of the youngest sailor with age >18,
for each rating with at least 2 such sailors

FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (¥)

SELECT S.rating, MIN (S.age)
AS minage

>1

Answer relation:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Sailors instance:

rating

minage

25.5

35.0

25.5

sid|sname |rating | age
22 | dustin 7 |45.0
29 | brutus 1 |33.0
31 | lubber 8 [55.5
32 | andy 8 [255
58 | rusty 10 |35.0
64 | horatio 7 (350
71 | zorba 10 [16.0
74 | horatio 9 |35.0
85 | art 3 [255
95 | bob 3 [635
96 | frodo 3 [255

7

22

Find age of the youngest sailor with age > 18, \®€7

for each rating with at least 2 such sailors.

rating | age rating | age
7 450 1 |33.0
1 (33.0 3 (255
8 |55.5 3 |635 rating | minage
8 |255 3 |255 3 |[25.5
10 | 35.0 7 145.0 ‘ 7 |[35.0
7 |35.0 7 1350 8 |25.5
10 [16.0 8 |555
g |22l 8 |255
|2 9 (350
31635 10 |35.0
3 |255

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Find age of the youngest sailor with age >18, for each rating
with at least 2 such sailors and with every sailor under 60.

k<

HAVING COUNT (*) > 1 AND EVERY (S.age <=60)

rating | age
7 |45.0
1 |33.0
8 |55.5
8 |255
10 |35.0
7 |35.0
10 |16.0
9 |35.0
3 |255
3 |63.5
3 |255

=)

rating

age

1

33.0

25.5
63.5
25.5

45.0
35.0

95.5
25.5

O© 0 0N NjWw w Ww

35.0

=
o

35.0

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

rating | minage
‘ 7 [350

8 |255

What is the result of
changing EVERY to
ANY?

24

Find age of the youngest sailor with age 218, for
each rating with at least 2 sailors between 18 and 60.

FROM Sailors S

GROUP BY S.rating

SELECT S.rating, MIN (S.age)

AS minage

HAVING COUNT (*¥) > 1

WHERE S.age >= 18 AND S.age <= 60

AN

Sailors instance:

W

Answer relation:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

rating | minage
3 |255
7 [35.0
8 |255

sid|sname |rating | age
22 | dustin 7 |45.0
29 | brutus 1 |33.0
31 | lubber 8 [55.5
32 | andy 8 [255
58 | rusty 10 |35.0
64 | horatio 7 (350
71 | zorba 10 [16.0
74 | horatio 9 |35.0
85 | art 3 [255
95 | bob 3 [635
96 | frodo 3 [255

25

N\
For each red boat, find the number of \57

reservations for this boat

SELECT B.bid, COUNT (*) AS scount

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid AND B.color="red’
GROUP BY B.bid

% Grouping over a join of three relations.

< What do we get if we remove B.color="red’
from the WHERE clause and add a HAVING
clause with this condition?

% What if we drop Sailors and the condition
involving S.sid?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Find age of the youngest sailor with age > 18, \@#7
for each rating with at least 2 sailors (of any ag

SELECT S.rating, MIN (S.age)
FROM GSailors S
WHERE S.age > 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (¥)
FROM Sailors S2
WHERE S.rating=S2.rating)

% Shows HAVING clause can also contain a subquery.
% Compare this with the query where we considered
only ratings with 2 sailors over 18!

% What it HAVING clause is replaced by:
- HAVING COUNT(*) >1

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Find those ratings for which the average age zs

the minimum over all ratings

% Aggregate operations cannot be nested! WRONG:

SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (52.age)) FROM Sailors S2)

% Correct solution (in SQL/92):

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage
FROM GSailors S
GROUP BY S.rating) AS Temp
WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
FROM Temp)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

N\ =
Null Values \/

+ Field values in a tuple are sometimes unknown (e.g., a
rating has not been assigned) or inapplicable (e.g., no
spouse’s name).

= SQL provides a special value null for such situations.
% The presence of null complicates many issues. E.g.:

= Special operators needed to check if value is/is not null.

= Is rating>8 true or false when rating is equal to null? What
about AND, OR and NOT connectives?

= We need a 3-valued logic (true, false and unknown).

= Meaning of constructs must be defined carefully. (e.g.,
WHERE clause eliminates rows that don’t evaluate to true.)

- New operators (in particular, outer joins) possible/needed.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

N\ =
Integrity Constraints (Review)

% An IC describes conditions that every legal instance
of a relation must satisty.

= Inserts/deletes/updates that violate IC’s are disallowed.

= Can be used to ensure application semantics (e.g., sid is a
key), or prevent inconsistencies (e.g., sname has to be a
string, age must be < 200)

% Types of IC’s: Domain constraints, primary key
constraints, foreign key constraints, general
constraints.

= Domain constraints: Field values must be of right type.
Always enforced.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

CREATE TABLE Sailors '\
(sid INTEGER, \“/
sname CHAR(10),
rating INTEGER,

General Constraints

age REAL,
% Useful when PRIMARY KEY (sid),
more general CHECK (rating >=1
ICs than keys AND rating <=10)

CREATE TABLE Reserves
(sname CHAR(10),
bid INTEGER,

are involved.

&

D)

» Can use queries

to expr
cons’gafrsli day DATE, :
o PRIMARY KEY (bid,day),
+ Constraints can CONSTRAINT nolnterlakeRes
be named. CHECK ("Interlake” <>

(SELECT B.bname
FROM bBoats B
WHERE B.bid=bid)))

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

— Declaring a primary key

Add to the relation schema a line of the form:
PRIMARY KEY (<list of attributes>)

If the primary key has just one attribute, we may instead write PRIMARY
KEY immediately after the definition of the data type of the attribute, e.g.:

id INT PRIMARY KEY,

NULL values are not allowed in attributes of a primary key.

— When a key constraint is violated

When a key constraint is violated, an error message is produced.

The state of the database (i.e., the data it contains) is restored to what it

was before the action that caused the violation.

Updates in SQL are grouped in units called transactions (more about

transactions later in the course).

Constraint-violating transactions are undone (or rolled back).

— Primary Key Example, slide 1 of 2

SQL> CREATE TABLE Students (
2 cpr VARCHAR(10) PRIMARY KEY,
3 name VARCHAR(20),
4 address VARCHAR(20)
5)E

Table created.

SQL> INSERT INTO Students VALUES ('0602751127','Ethan Longwinder’,’"My Way 2');

1 row created.

SQL> INSERT INTO Students VALUES ('0602751127’,'Ethan Longwinder II',’My Way 2');
INSERT INTO Students VALUES ('0602751127','Ethan Longwinder II',’"My Way 2")
ERROR at line 1:

ORA-00001: unique constraint (ESBEN.SYS_C005079) violated

— Primary Key Example, slide 2 of 2

SQL> INSERT INTO Students VALUES (NULL, Mysterio Student’,"No Way 8’);
INSERT INTO Students VALUES (NULL, Mysterio Student’,"'No Way 8")
ERROR at line 1:

ORA-01400: cannot insert NULL into ("ESBEN"."STUDENTS".”" CPR")

SQL> SELECT * FROM Students;

CPR NAME ADDRESS
0602751127 Ethan Longwinder My Way 2

— Declaring other candidate keys

If we want the DBMS to check other uniqueness constraints, we may add to

the SQL relation schema any number of lines of the form:

UNIQUE (<list of attributes in key>)

Uniqueness is not guaranteed for tuples having NULL values in the key
attributes. However, NULL values can be prevented by adding a NOT NULL

constraint after the declaration of each key attribute.

— Unique Key Example, slide 1 of 3

SQL>
2

3
4
5
5

CREATE TABLE Students (

cpr VARCHAR(10) PRIMARY KEY,

name VARCHAR(30) NOT NULL,

address VARCHAR(20)

CONSTRAINT my_constraint UNIQUE (name,address));

)E

Table created.

SQL>

INSERT INTO Students VALUES ('0602751127’,'Ethan Longwinder’,"My Way 2');

1 row created.

SQL>

INSERT INTO Students VALUES (’0602751129’,'Ethan Longwinder’,"My Way 2’);

INSERT INTO Students VALUES ('0602751129’,"Ethan Longwinder’,’My Way 2')
ERROR at line 1:
ORA-00001: unique constraint (ESBEN.MY_CONSTRAINT) violated

10

— Unique Key Example, slide 2 of 3

SQL> INSERT INTO Students VALUES ('2103780002','"H. Omeless’,NULL);

1 row created.

SQL> INSERT INTO Students VALUES ('2103780004',NULL,NULL);
INSERT INTO Students VALUES (2103780004’ ,NULL,NULL)
ERROR at line 1:

ORA-01400: cannot insert NULL into ("ESBEN"."STUDENTS"”.” NAME")

SQL> SELECT * FROM Students;

CPR NAME ADDRESS
0602751127 Ethan Longwinder My Way 2
2103780002 H. Omeless

11

— Unique Key Example, slide 3 of 3

SQL> INSERT INTO Students VALUES ('0602751129’,'Bullie Bank’,’Goa Way 10');

1 row created.

SQL> INSERT INTO Students VALUES ('0602751131’,'Ethan Longwinder’,’"My Way 4');

1 row created.

SQL> UPDATE Students SET address = 'Urban Collective’:
UPDATE Students SET address = "Urban Collective’

ERROR at line 1:

ORA-00001: unique constraint (ESBEN.MY_CONSTRAINT) violated

SQL> SELECT * FROM Students;

CPR NAME ADDRESS
0602751127 Ethan Longwinder My Way 2
2103780002 H. Omeless

0602751129 Bullie Bank Goa Way 10
0602751131 Ethan Longwinder My Way 4

12

— Should every relation have a primary key? —

Short answer: Not necessarily.

Consider for example the relation corresponding to a simple multivalued

attribute in an E-R diagram:
e Typically, the only candidate key would consist of both attributes.

e Thus, a primary key constraint would only serve the purpose of

eliminating duplicate tuples.

13

Next: Assertion-based constraints.

— NOT NULL constraints

The constraint NOT NULL may be specified for any attribute in a relation

schema, indicating that NULL is not a legal value.

In general, any attribute that does not correspond to an optional attribute
in the E-R diagram should be declared NOT NULL.

15

— CHECK constraints

Many business rules can be expressed as so-called CHECK constraints, which
are assertions (i.e., conditions that must be true) about attributes or tuples
of a relation.

e A CHECK constraint on an attribute is checked every time

— a value of this attribute is modified.

— a new tuple is inserted.

e A CHECK constraint on tuples is checked every time
— an attribute value changes.
— a new tuple is inserted.

e If a constraint is violated, the current transaction is rolled back, and an

error message is produced.

16

— Writing attribute-based CHECK constraints —

A constraint C on an attribute is declared by writing
CHECK C
immediately after the datatype definition.

The condition C may refer to other attributes of the relation, and even to

other relations, using a subquery.

(However, Oracle does not allow SQL queries in C.)

Examples:
e percentage INT CHECK (percentage>=0 AND percentage<=100)

e cpr CHAR(10) CHECK (cpr IN (SELECT cpr FROM students))

17

— Writing tuple-based CHECK constraints

A constraint C on tuples is declared by adding the line
CHECK C

to the relation schema definition.

The only difference to attribute-based CHECK constraints is when the

constraint is checked.

Examples:
e CHECK (upper-bound => lower-bound)

e CHECK (cpr IN (SELECT cpr FROM students))

18

Next: Foreign keys.

— Foreign key constraints

A foreign key constraint on an attribute is a constraint saying that its

attribute values can always be found in exactly one place in another relation.

Foreign key constraints are typically used to express referential integrity,

i.e., that values supposed to refer to tuples in other tables indeed do so.

If we want the DBMS to check foreign key constraints, we may add to the

SQL relation schema any number of declarations of the form:

FOREIGN KEY (<attribute name>)

REFERENCES <table name> (<attribute name>)

20

— Composite foreign keys

Foreign keys may be composite, i.e., consist of several attributes.

The syntax for declaring composite foreign keys is the obvious extension of

what we saw before:

FOREIGN KEY (<list of attribute names>)

REFERENCES <table name>(<list of attribute names>)

21

— Semantics of a foreign key constraint

Suppose the schema for relation R contains the declaration
FOREIGN KEY (A;,...,A,) REFERENCES S(Bj,...,B,).

Then the relation S must have By, ..., B, as primary keys or contain a

declaration like
UNIQUE (Bi,...,B,).

This means that the DBMS checks that any values of A¢,..., A, in a tuple

of R can also be found as values of By,..., B,, in a tuple of S.

22

— Assertation Example, slide 1 of 3

SQL> CREATE TABLE ITUpeople (
2 cpr VARCHAR(10) PRIMARY KEY,
3 name VARCHAR(30) NOT NULL,
4 address VARCHAR(20)
5)E
SQL> CREATE TABLE Students (
2 cpr VARCHAR(10) PRIMARY KEY
3 CONSTRAINT ValidCPR REFERENCES ITUpeople(cpr),
4 enrolled VARCHAR(10),
5 graduated VARCHAR(10),
6 gpa REAL CHECK (gpa>=6 AND gpa<=13),
7 CONSTRAINT PositiveStudyTime CHECK (enrolled < graduated)
8);
SQL> INSERT INTO ITUpeople VALUES ('0602751129','Bullie Bank','Goa Way 10’);

23

— Assertation Example, slide 2 of 3

SQL> INSERT INTO Students VALUES ('0602751129','2003-08-01",NULL,NULL);

1 row created.

SQL> UPDATE Students SET graduated = '2001-02-28" WHERE cpr="0602751129’;
UPDATE Students SET graduated = '2001-02-28" WHERE cpr="0602751129’

ERROR at line 1:

ORA-02290: check constraint (ESBEN.POSITIVESTUDYTIME) violated

SQL> DELETE FROM ITUpeople WHERE cpr="0602751129’;

DELETE FROM ITUpeople WHERE cpr="0602751129’

ERROR at line 1:

ORA-02292: integrity constraint (ESBEN.VALIDCPR) violated - child record found

SQL> SELECT * FROM ITUpeople;

CPR NAME ADDRESS
0602751129 Bullie Bank Goa Way 10

24

— Assertation Example, slide 3 of 3

SQL> ALTER TABLE Students DROP CONSTRAINT ValidCPR;
SQL> ALTER TABLE Students ADD CONSTRAINT ValidCPR
2 FOREIGN KEY (cpr) REFERENCES ITUpeople(cpr) ON DELETE CASCADE;
SQL> DELETE FROM ITUpeople WHERE cpr='0602751129’;
SQL> SELECT * FROM ITUpeople;

SQL>

SELECT * FROM Students;

25

— Problem session (5 minutes)

What is the difference (if any) between the CHECK constraint

cpr CHAR(10) CHECK (cpr IN (SELECT cpr FROM students))

and the referential integrity constraint

cpr CHAR(10) REFERENCES students(cpr)

26

— Referential integrity from E-R diagrams

If a relationship in our E-R diagram has an “exactly one” cardinality

constraint, it can be expressed as a foreign key constraint.

This means that the DBMS maintains the referential integrity of the

relationship.

There seems to be no general way to express an “at least one” cardinality

constraint.

Note that in supertype-subtype relationships there is an implicit “exactly

one’ cardinality constraint.

27

— Maintaining referential integrity

The default (i.e., standard) policy when a transaction violates a foreign key

constraint is to roll the transaction back.

However, for each referential constraint we may choose from two other

policies for handling changes to the referenced relation:

e The cascade policy:

— If the foreign key attribute values of a tuple were changed, change

all references to this tuple to the new value.

— If a tuple is deleted, delete all tuples referencing it.

e The set-null policy:

— |f some reference became invalid, set all its attribute values to NULL.

28

Next: Triggers.

— Triggers

Triggers is a general mechanism for:
e Enforcing constraints/business rules, and more generally

e Making the DBMS perform actions on certain events.

The definition of a trigger consist of an event, a condition, and an action.

e Triggers are awakened (or triggered) when the event, a certain change

to the database, occurs.

e |f the condition associated with the trigger is true, then the action is

performed.

30

— Triggers in SQL

Key features of triggers in SQL:
e Triggering events are insertions, deletions, and updates of tuples.

e The action can be any SQL statement.
(But most RDBMSs have restrictions on the SQL allowed in the action.)

e [he action can refer to values from both before and after the event.

e The action can be performed either
— After each event that activates the trigger, or

— At the end of each transaction where one or more events activated

the trigger.

31

— Trigger Example, slide 1 of 4

SQL> select * from MovieExec:
NAME ADDRESS CERT NETWORTH
George Lucas Oak Rd. 555 200000000
Ted Turner Turner Av. 333 125000000
Stephen Spielberg 123 ET road 222 100000000
Merv Griffin Riot Rd. 199 112000000
Calvin Coolidge Fast Lane 123 20000000
SQL> CREATE TABLE NetworthHistory (
2 name VARCHAR(25),
3 oldnetworth INT,
4 newnetworth INT
5);

Table created

32

— Trigger Example, slide 2 of 4

SQL> CREATE TRIGGER NetWorthTrigger
AFTER UPDATE OF netWorth ON MovieExec
REFERENCING

OLD AS Oldtuple

NEW AS Newtuple
FOR EACH ROW
WHEN (Oldtuple.networth <> NewTuple.networth)
BEGIN

INSERT INTO NetworthHistory

VALUES (:Oldtuple.name,:Oldtuple.networth,:Newtuple.networth);
END;

© 0O ~N o o0 b W DN

Y
N = O
~

33

— Trigger Example, slide 3 of 4

SQL> UPDATE MovieExec
2 SET netWorth = 29000000
3 WHERE name="George Lucas’;

1 row updated.

SQL> SELECT * FROM NetworthHistory;

NAME OLDNETWORTH NEWNETWORTH

George Lucas 200000000 29000000

34

— Trigger Example, slide 4 of 4

SQL> UPDATE MovieExec
2 SET netWorth = 25000000
3 WHERE name="George Lucas’;

1 row updated.

SQL> SELECT * FROM NetworthHistory;

NAME OLDNETWORTH NEWNETWORTH

George Lucas 200000000 29000000
George Lucas 29000000 25000000

35

— Trigger definition syntax, simplified

Syntax in Oracle (differs slightly from SQL definition):

CREATE TRIGGER <name of trigger> AFTER
INSERT | DELETE | UPDATE
[OF <attribute name>] ON <name of relation or view>
[REFERENCING OLD AS <name>, NEW AS <name>]
[FOR EACH ROW
[WHEN <condition>]]
BEGIN
<PL/SQL commands>
END;

Vertical lines | between alternatives. Brackets [] around optional parts.

Variables in <PL/SQL commands> must be prefixed by semicolon (:01d.a).

— Most important points in this lecture

As a minimum, you should after this week:

e Know how to declare key constraints and referential integrity (i.e.,

foreign key) constraints in SQL.

e Understand the basic mechanisms for maintaining referential integrity.

e Know how to declare tuple-based CHECK constraints, and know how

these are checked.

e Understand how to define triggers, and the mechanism for executing

triggers in SQL.

37

